Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Fundamental Research ; 2023.
Artículo en Inglés | ScienceDirect | ID: covidwho-2311541

RESUMEN

Combinatorial drug therapies are generally more effective than monotherapies in treating viral infections. However, it is critical for dose optimization to maximize the efficacy and minimize side effects. Although various strategies have been deviseenchmark functions is available at Github repositoryd to accelerate the optimization process, their efficiencies were limited by the high noises and suboptimal reproducibility of biological assays. With conventional methods, variances among the replications are used to evaluate the errors of the readouts alone rather than actively participating in the optimization. Herein, we present the Regression Modeling Enabled by Monte Carlo Method (ReMEMC) algorithm for rapid identification of effective combinational therapies. ReMEMC transforms the sample variations into probability distributions of the regression coefficients and predictions. In silico simulations revealed that ReMEMC outperformed conventional regression methods in benchmark problems, and demonstrated its superior robustness against experimental noises. Using COVID-19 as a model disease, ReMEMC successfully identified an optimal 3-drug combination among 10 anti-SARS-CoV-2 drug compounds within two rounds of experiments. The optimal combination showed 2-log and 3-log higher load reduction than non-optimized combinations and monotherapy, respectively. Further workflow refinement allowed identification of personalized drug combinational therapies within 5 days. The strategy may serve as an efficient and universal tool for dose combination optimization.

2.
Cell Rep Med ; 3(10): 100774, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: covidwho-2050073

RESUMEN

"Pan-coronavirus" antivirals targeting conserved viral components can be designed. Here, we show that the rationally engineered H84T-banana lectin (H84T-BanLec), which specifically recognizes high mannose found on viral proteins but seldom on healthy human cells, potently inhibits Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (including Omicron), and other human-pathogenic coronaviruses at nanomolar concentrations. H84T-BanLec protects against MERS-CoV and SARS-CoV-2 infection in vivo. Importantly, intranasally and intraperitoneally administered H84T-BanLec are comparably effective. Mechanistic assays show that H84T-BanLec targets virus entry. High-speed atomic force microscopy depicts real-time multimolecular associations of H84T-BanLec dimers with the SARS-CoV-2 spike trimer. Single-molecule force spectroscopy demonstrates binding of H84T-BanLec to multiple SARS-CoV-2 spike mannose sites with high affinity and that H84T-BanLec competes with SARS-CoV-2 spike for binding to cellular ACE2. Modeling experiments identify distinct high-mannose glycans in spike recognized by H84T-BanLec. The multiple H84T-BanLec binding sites on spike likely account for the drug compound's broad-spectrum antiviral activity and the lack of resistant mutants.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , Humanos , SARS-CoV-2 , Lectinas/farmacología , Manosa/farmacología , Enzima Convertidora de Angiotensina 2 , Glicoproteína de la Espiga del Coronavirus/farmacología , Antivirales/farmacología
3.
Int J Biol Sci ; 18(12): 4744-4755, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1954694

RESUMEN

Viruses exploit the host lipid metabolism machinery to achieve efficient replication. We herein characterize the lipids profile reprogramming in vitro and in vivo using liquid chromatography-mass spectrometry-based untargeted lipidomics. The lipidome of SARS-CoV-2-infected Caco-2 cells was markedly different from that of mock-infected samples, with most of the changes involving downregulation of ceramides. In COVID-19 patients' plasma samples, a total of 54 lipids belonging to 12 lipid classes that were significantly perturbed compared to non-infected control subjects' plasma samples were identified. Among these 12 lipid classes, ether-linked phosphatidylcholines, ether-linked phosphatidylethanolamines, phosphatidylcholines, and ceramides were the four most perturbed. Pathway analysis revealed that the glycerophospholipid, sphingolipid, and ether lipid metabolisms pathway were the most significantly perturbed host pathways. Phosphatidic acid phosphatases (PAP) were involved in all three pathways and PAP-1 deficiency significantly suppressed SARS-CoV-2 replication. siRNA knockdown of LPIN2 and LPIN3 resulted in significant reduction of SARS-CoV-2 load. In summary, these findings characterized the host lipidomic changes upon SARS-CoV-2 infection and identified PAP-1 as a potential target for intervention for COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Células CACO-2 , Ceramidas , Éteres , Glicerofosfolípidos , Humanos , Metabolismo de los Lípidos , Fosfatidato Fosfatasa/genética , Fosfatidato Fosfatasa/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo
5.
Science ; 377(6604): 428-433, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1901908

RESUMEN

The in vivo pathogenicity, transmissibility, and fitness of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron (B.1.1.529) variant are not well understood. We compared these virological attributes of this new variant of concern (VOC) with those of the Delta (B.1.617.2) variant in a Syrian hamster model of COVID-19. Omicron-infected hamsters lost significantly less body weight and exhibited reduced clinical scores, respiratory tract viral burdens, cytokine and chemokine dysregulation, and lung damage than Delta-infected hamsters. Both variants were highly transmissible through contact transmission. In noncontact transmission studies Omicron demonstrated similar or higher transmissibility than Delta. Delta outcompeted Omicron without selection pressure, but this scenario changed once immune selection pressure with neutralizing antibodies-active against Delta but poorly active against Omicron-was introduced. Next-generation vaccines and antivirals effective against this new VOC are therefore urgently needed.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , COVID-19/transmisión , Modelos Animales de Enfermedad , Mesocricetus , SARS-CoV-2/patogenicidad , Virulencia
6.
Nat Commun ; 13(1): 3589, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1900488

RESUMEN

The strikingly high transmissibility and antibody evasion of SARS-CoV-2 Omicron variants have posed great challenges to the efficacy of current vaccines and antibody immunotherapy. Here, we screen 34 BNT162b2-vaccinees and isolate a public broadly neutralizing antibody ZCB11 derived from the IGHV1-58 family. ZCB11 targets viral receptor-binding domain specifically and neutralizes all SARS-CoV-2 variants of concern, especially with great potency against authentic Omicron and Delta variants. Pseudovirus-based mapping of 57 naturally occurred spike mutations or deletions reveals that S371L results in 11-fold neutralization resistance, but it is rescued by compensating mutations in Omicron variants. Cryo-EM analysis demonstrates that ZCB11 heavy chain predominantly interacts with Omicron spike trimer with receptor-binding domain in up conformation blocking ACE2 binding. In addition, prophylactic or therapeutic ZCB11 administration protects lung infection against Omicron viral challenge in golden Syrian hamsters. These results suggest that vaccine-induced ZCB11 is a promising broadly neutralizing antibody for biomedical interventions against pandemic SARS-CoV-2.


Asunto(s)
Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes , COVID-19 , Animales , Anticuerpos Antivirales/inmunología , Vacuna BNT162 , Anticuerpos ampliamente neutralizantes/inmunología , COVID-19/prevención & control , Cricetinae , Humanos , Mesocricetus , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
7.
Nat Commun ; 13(1): 2539, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1830055

RESUMEN

Extrapulmonary complications of different organ systems have been increasingly recognized in patients with severe or chronic Coronavirus Disease 2019 (COVID-19). However, limited information on the skeletal complications of COVID-19 is known, even though inflammatory diseases of the respiratory tract have been known to perturb bone metabolism and cause pathological bone loss. In this study, we characterize the effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on bone metabolism in an established golden Syrian hamster model for COVID-19. SARS-CoV-2 causes significant multifocal loss of bone trabeculae in the long bones and lumbar vertebrae of all infected hamsters. Moreover, we show that the bone loss is associated with SARS-CoV-2-induced cytokine dysregulation, as the circulating pro-inflammatory cytokines not only upregulate osteoclastic differentiation in bone tissues, but also trigger an amplified pro-inflammatory cascade in the skeletal tissues to augment their pro-osteoclastogenesis effect. Our findings suggest that pathological bone loss may be a neglected complication which warrants more extensive investigations during the long-term follow-up of COVID-19 patients. The benefits of potential prophylactic and therapeutic interventions against pathological bone loss should be further evaluated.


Asunto(s)
COVID-19 , Animales , COVID-19/complicaciones , Cricetinae , Modelos Animales de Enfermedad , Humanos , Mesocricetus , SARS-CoV-2
8.
Protein Cell ; 13(12): 940-953, 2022 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1777863

RESUMEN

The emergence of SARS-CoV-2 variants of concern and repeated outbreaks of coronavirus epidemics in the past two decades emphasize the need for next-generation pan-coronaviral therapeutics. Drugging the multi-functional papain-like protease (PLpro) domain of the viral nsp3 holds promise. However, none of the known coronavirus PLpro inhibitors has been shown to be in vivo active. Herein, we screened a structurally diverse library of 50,080 compounds for potential coronavirus PLpro inhibitors and identified a noncovalent lead inhibitor F0213 that has broad-spectrum anti-coronaviral activity, including against the Sarbecoviruses (SARS-CoV-1 and SARS-CoV-2), Merbecovirus (MERS-CoV), as well as the Alphacoronavirus (hCoV-229E and hCoV-OC43). Importantly, F0213 confers protection in both SARS-CoV-2-infected hamsters and MERS-CoV-infected human DPP4-knockin mice. F0213 possesses a dual therapeutic functionality that suppresses coronavirus replication via blocking viral polyprotein cleavage, as well as promoting antiviral immunity by antagonizing the PLpro deubiquitinase activity. Despite the significant difference of substrate recognition, mode of inhibition studies suggest that F0213 is a competitive inhibitor against SARS2-PLpro via binding with the 157K amino acid residue, whereas an allosteric inhibitor of MERS-PLpro interacting with its 271E position. Our proof-of-concept findings demonstrated that PLpro is a valid target for the development of broad-spectrum anti-coronavirus agents. The orally administered F0213 may serve as a promising lead compound for combating the ongoing COVID-19 pandemic and future coronavirus outbreaks.


Asunto(s)
Proteasas Similares a la Papaína de Coronavirus , SARS-CoV-2 , Animales , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Cricetinae , Humanos , Ratones , Pandemias , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Tratamiento Farmacológico de COVID-19
9.
Viruses ; 12(6)2020 06 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1726021

RESUMEN

The ongoing Coronavirus Disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) signals an urgent need for an expansion in treatment options. In this study, we investigated the anti-SARS-CoV-2 activities of 22 antiviral agents with known broad-spectrum antiviral activities against coronaviruses and/or other viruses. They were first evaluated in our primary screening in VeroE6 cells and then the most potent anti-SARS-CoV-2 antiviral agents were further evaluated using viral antigen expression, viral load reduction, and plaque reduction assays. In addition to remdesivir, lopinavir, and chloroquine, our primary screening additionally identified types I and II recombinant interferons, 25-hydroxycholesterol, and AM580 as the most potent anti-SARS-CoV-2 agents among the 22 antiviral agents. Betaferon (interferon-ß1b) exhibited the most potent anti-SARS-CoV-2 activity in viral antigen expression, viral load reduction, and plaque reduction assays among the recombinant interferons. The lipogenesis modulators 25-hydroxycholesterol and AM580 exhibited EC50 at low micromolar levels and selectivity indices of >10.0. Combinational use of these host-based antiviral agents with virus-based antivirals to target different processes of the SARS-CoV-2 replication cycle should be evaluated in animal models and/or clinical trials.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , Animales , Antígenos Virales/inmunología , Betacoronavirus/inmunología , Betacoronavirus/metabolismo , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Humanos , Interferones/metabolismo , Lipogénesis/efectos de los fármacos , Pandemias , Neumonía Viral/virología , SARS-CoV-2 , Transducción de Señal/efectos de los fármacos , Células Vero , Carga Viral/efectos de los fármacos , Ensayo de Placa Viral , Replicación Viral/efectos de los fármacos
10.
Clin Infect Dis ; 75(1): e1101-e1111, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1429186

RESUMEN

BACKGROUND: The effect of low environmental temperature on viral shedding and disease severity of Coronavirus Disease 2019 (COVID-19) is uncertain. METHODS: We investigated the virological, clinical, pathological, and immunological changes in hamsters housed at room (21°C), low (12-15°C), and high (30-33°C) temperature after challenge by 105 plaque-forming units of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RESULTS: The nasal turbinate, trachea, and lung viral load and live virus titer were significantly higher (~0.5-log10 gene copies/ß-actin, P < .05) in the low-temperature group at 7 days postinfection (dpi). The low-temperature group also demonstrated significantly higher level of tumor necrosis factor-α, interferon-γ (IFN-γ), interleukin-1ß, and C-C motif chemokine ligand 3, and lower level of the antiviral IFN-α in lung tissues at 4 dpi than the other 2 groups. Their lungs were grossly and diffusely hemorrhagic, with more severe and diffuse alveolar and peribronchiolar inflammatory infiltration, bronchial epithelial cell death, and significantly higher mean total lung histology scores. By 7 dpi, the low-temperature group still showed persistent and severe alveolar inflammation and hemorrhage, and little alveolar cell proliferative changes of recovery. The viral loads in the oral swabs of the low-temperature group were significantly higher than those of the other two groups from 10 to 17 dpi by about 0.5-1.0 log10 gene copies/ß-actin. The mean neutralizing antibody titer of the low-temperature group was significantly (P < .05) lower than that of the room temperature group at 7 dpi and 30 dpi. CONCLUSIONS: This study provided in vivo evidence that low environmental temperature exacerbated the degree of virus shedding, disease severity, and tissue proinflammatory cytokines/chemokines expression, and suppressed the neutralizing antibody response of SARS-CoV-2-infected hamsters. Keeping warm in winter may reduce the severity of COVID-19.


Asunto(s)
COVID-19 , Actinas , Animales , Anticuerpos Neutralizantes , Cricetinae , Modelos Animales de Enfermedad , Humanos , Pulmón , Mesocricetus , SARS-CoV-2 , Temperatura
11.
Int J Biol Sci ; 17(6): 1555-1564, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1206436

RESUMEN

The Coronavirus Disease 2019 (COVID-19) pandemic caused by the novel lineage B betacoroanvirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant mortality, morbidity, and socioeconomic disruptions worldwide. Effective antivirals are urgently needed for COVID-19. The main protease (Mpro) of SARS-CoV-2 is an attractive antiviral target because of its essential role in the cleavage of the viral polypeptide. In this study, we performed an in silico structure-based screening of a large chemical library to identify potential SARS-CoV-2 Mpro inhibitors. Among 8,820 compounds in the library, our screening identified trichostatin A, a histone deacetylase inhibitor and an antifungal compound, as an inhibitor of SARS-CoV-2 Mpro activity and replication. The half maximal effective concentration of trichostatin A against SARS-CoV-2 replication was 1.5 to 2.7µM, which was markedly below its 50% effective cytotoxic concentration (75.7µM) and peak serum concentration (132µM). Further drug compound optimization to develop more stable analogues with longer half-lives should be performed. This structure-based drug discovery platform should facilitate the identification of additional enzyme inhibitors of SARS-CoV-2.


Asunto(s)
Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasas/farmacología , Animales , Células CACO-2 , Chlorocebus aethiops , Simulación por Computador , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteasas/química , Células Vero
12.
Emerg Microbes Infect ; 10(1): 874-884, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1199439

RESUMEN

The Coronavirus Disease 2019 (COVID-19) pandemic is unlikely to abate until sufficient herd immunity is built up by either natural infection or vaccination. We previously identified ten linear immunodominant sites on the SARS-CoV-2 spike protein of which four are located within the RBD. Therefore, we designed two linkerimmunodominant site (LIS) vaccine candidates which are composed of four immunodominant sites within the RBD (RBD-ID) or all the 10 immunodominant sites within the whole spike (S-ID). They were administered by subcutaneous injection and were tested for immunogenicity and in vivo protective efficacy in a hamster model for COVID-19. We showed that the S-ID vaccine induced significantly better neutralizing antibody response than RBD-ID and alum control. As expected, hamsters vaccinated by S-ID had significantly less body weight loss, lung viral load, and histopathological changes of pneumonia. The S-ID has the potential to be an effective vaccine for protection against COVID-19.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Epítopos Inmunodominantes/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Cricetinae , Femenino , Células HEK293 , Humanos , Masculino , Mesocricetus , Ratones , Ratones Endogámicos BALB C , Vacunación
13.
Nature ; 593(7859): 418-423, 2021 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1137788

RESUMEN

The COVID-19 pandemic is the third outbreak this century of a zoonotic disease caused by a coronavirus, following the emergence of severe acute respiratory syndrome (SARS) in 20031 and Middle East respiratory syndrome (MERS) in 20122. Treatment options for coronaviruses are limited. Here we show that clofazimine-an anti-leprosy drug with a favourable safety profile3-possesses inhibitory activity against several coronaviruses, and can antagonize the replication of SARS-CoV-2 and MERS-CoV in a range of in vitro systems. We found that this molecule, which has been approved by the US Food and Drug Administration, inhibits cell fusion mediated by the viral spike glycoprotein, as well as activity of the viral helicase. Prophylactic or therapeutic administration of clofazimine in a hamster model of SARS-CoV-2 pathogenesis led to reduced viral loads in the lung and viral shedding in faeces, and also alleviated the inflammation associated with viral infection. Combinations of clofazimine and remdesivir exhibited antiviral synergy in vitro and in vivo, and restricted viral shedding from the upper respiratory tract. Clofazimine, which is orally bioavailable and comparatively cheap to manufacture, is an attractive clinical candidate for the treatment of outpatients and-when combined with remdesivir-in therapy for hospitalized patients with COVID-19, particularly in contexts in which costs are an important factor or specialized medical facilities are limited. Our data provide evidence that clofazimine may have a role in the control of the current pandemic of COVID-19 and-possibly more importantly-in dealing with coronavirus diseases that may emerge in the future.


Asunto(s)
Antivirales/farmacología , Clofazimina/farmacología , Coronavirus/clasificación , Coronavirus/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/uso terapéutico , Alanina/análogos & derivados , Alanina/farmacología , Alanina/uso terapéutico , Animales , Antiinflamatorios/farmacocinética , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antivirales/farmacocinética , Antivirales/uso terapéutico , Disponibilidad Biológica , Fusión Celular , Línea Celular , Clofazimina/farmacocinética , Clofazimina/uso terapéutico , Coronavirus/crecimiento & desarrollo , Coronavirus/patogenicidad , Cricetinae , ADN Helicasas/antagonistas & inhibidores , Sinergismo Farmacológico , Femenino , Humanos , Estadios del Ciclo de Vida/efectos de los fármacos , Masculino , Mesocricetus , Profilaxis Pre-Exposición , SARS-CoV-2/crecimiento & desarrollo , Especificidad de la Especie , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética
14.
Cell Host Microbe ; 29(4): 551-563.e5, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: covidwho-1101147

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is characterized by a burst in the upper respiratory portal for high transmissibility. To determine human neutralizing antibodies (HuNAbs) for entry protection, we tested three potent HuNAbs (IC50 range, 0.0007-0.35 µg/mL) against live SARS-CoV-2 infection in the golden Syrian hamster model. These HuNAbs inhibit SARS-CoV-2 infection by competing with human angiotensin converting enzyme-2 for binding to the viral receptor binding domain (RBD). Prophylactic intraperitoneal or intranasal injection of individual HuNAb or DNA vaccination significantly reduces infection in the lungs but not in the nasal turbinates of hamsters intranasally challenged with SARS-CoV-2. Although postchallenge HuNAb therapy suppresses viral loads and lung damage, robust infection is observed in nasal turbinates treated within 1-3 days. Our findings demonstrate that systemic HuNAb suppresses SARS-CoV-2 replication and injury in lungs; however, robust viral infection in nasal turbinate may outcompete the antibody with significant implications to subprotection, reinfection, and vaccine.


Asunto(s)
Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , COVID-19/terapia , SARS-CoV-2/inmunología , Cornetes Nasales/virología , Enzima Convertidora de Angiotensina 2/fisiología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/virología , Cricetinae , Femenino , Células HEK293 , Humanos , Masculino , Mesocricetus , Carga Viral
15.
Emerg Microbes Infect ; 10(1): 291-304, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1062822

RESUMEN

Effective treatments for coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently needed. Dexamethasone has been shown to confer survival benefits to certain groups of hospitalized patients, but whether glucocorticoids such as dexamethasone and methylprednisolone should be used together with antivirals to prevent a boost of SARS-CoV-2 replication remains to be determined. Here, we show the beneficial effect of methylprednisolone alone and in combination with remdesivir in the hamster model of SARS-CoV-2 infection. Treatment with methylprednisolone boosted RNA replication of SARS-CoV-2 but suppressed viral induction of proinflammatory cytokines in human monocyte-derived macrophages. Although methylprednisolone monotherapy alleviated body weight loss as well as nasal and pulmonary inflammation, viral loads increased and antibody response against the receptor-binding domain of spike protein attenuated. In contrast, a combination of methylprednisolone with remdesivir not only prevented body weight loss and inflammation, but also dampened viral protein expression and viral loads. In addition, the suppressive effect of methylprednisolone on antibody response was alleviated in the presence of remdesivir. Thus, combinational anti-inflammatory and antiviral therapy might be an effective, safer and more versatile treatment option for COVID-19. These data support testing of the efficacy of a combination of methylprednisolone and remdesivir for the treatment of COVID-19 in randomized controlled clinical trials.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Metilprednisolona/uso terapéutico , SARS-CoV-2/efectos de los fármacos , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/uso terapéutico , Alanina/farmacología , Alanina/uso terapéutico , Animales , Anticuerpos Antivirales/sangre , Antivirales/farmacología , COVID-19/patología , COVID-19/virología , Citocinas/biosíntesis , Citocinas/inmunología , Modelos Animales de Enfermedad , Quimioterapia Combinada , Femenino , Humanos , Macrófagos/inmunología , Macrófagos/virología , Masculino , Mesocricetus , Metilprednisolona/farmacología , ARN Viral , Sistema Respiratorio/patología , Sistema Respiratorio/virología , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/inmunología , Carga Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos
16.
Res Sq ; 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: covidwho-869425

RESUMEN

COVID-19 pandemic is the third zoonotic coronavirus (CoV) outbreak of the century after severe acute respiratory syndrome (SARS) in 2003 and Middle East respiratory syndrome (MERS) since 2012. Treatment options for CoVs are largely lacking. Here, we show that clofazimine, an anti-leprosy drug with a favorable safety and pharmacokinetics profile, possesses pan-coronaviral inhibitory activity, and can antagonize SARS-CoV-2 replication in multiple in vitro systems, including the human embryonic stem cell-derived cardiomyocytes and ex vivo lung cultures. The FDA-approved molecule was found to inhibit multiple steps of viral replication, suggesting multiple underlying antiviral mechanisms. In a hamster model of SARS-CoV-2 pathogenesis, prophylactic or therapeutic administration of clofazimine significantly reduced viral load in the lung and fecal viral shedding, and also prevented cytokine storm associated with viral infection. Additionally, clofazimine exhibited synergy when administered with remdesivir. Since clofazimine is orally bioavailable and has a comparatively low manufacturing cost, it is an attractive clinical candidate for outpatient treatment and remdesivir-based combinatorial therapy for hospitalized COVID-19 patients, particularly in developing countries. Taken together, our data provide evidence that clofazimine may have a role in the control of the current pandemic SARS-CoV-2, endemic MERS-CoV in the Middle East, and, possibly most importantly, emerging CoVs of the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA